
Image Source: Rodney Dyer

Hidden structure in polygenic scores and 
the challenge of disentangling ancestry 
interactions in admixed populations

Alan J. Aw

Postdoctoral Fellow

Department of Genetics

University of Pennsylvania


1

Joint work with R. Mandla, Z. Shi, B. Paşaniuc and I. Mathieson

Stat Gen 2025 | IS24: Genetic Inference and Prediction in Structured Populations



Complex traits and poor portability
• Complex traits (e.g., height) are influenced by networks of genes that act in 

concert to regulate expression   


• Polygenic scores trained in one population port poorly into other populations 

PGSHeight = β1x1 + … + β5000x5000

Variant Effect Sizes 

(obtained from European GWAS, 


trained on European samples)

Allelic Dosages

Image Sources: Estrada et al. (2009) Hum Mol Genet., Privé et al. (2022) AJHG2

Genetic Distance to UK (Training Cohort)
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What explains the poor portability?
1. Recent work (Hou et al., 2023 Nat. Genet.; Hu et al., 2025 Nat. Genet.) 

suggests high similarity in causal effects across ancestries


2. Differences in linkage disequilibrium (LD) patterns and allele frequencies 
between ancestries    


3. Interactions (Gene-by-gene [GxG] and Gene-by-environment [GxE]) 


• How can causal effects be highly similar in spite of interactions?   

3

Background



The role of admixed populations
• Ancestry mosaicism in admixed individuals can capture differences in allele 

frequencies and environmental exposures     

Image Source: Korunes and Goldberg (2021) PLoS Genetics4

(i.e., mosaicism) 
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Build Statistical Models of Gene-by-Ancestry (GxA) Interactions



Causal effects are similar between what?
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Europeans

Africans

Admixed Population 

(e.g., African Americans)

β′ 
Eur β′ 

Afrvs

Causal Effect
Individual  

Causal  
Effect

Average  
Causal  
Effect

Hou et al. (2023) and Hu et al. (2025): Average causal effects are highly similar across local ancestries 

Background



Base model of causal effects
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• Ancestral non-admixed population causal effect sizes follow a bivariate 
normal distribution:

β′ 
Eur

β′ 
Afr

∼ N [0
0], [

σ′ Eur
2 τ′ 

τ′ σ′ Afr
2]

Causal effect correlation =  τ′ / σ′ Eur
2σ′ Afr

2 = ρ

σ′ Eur
2 = r2

2∑p
j=1 f′ jEur(1 − f′ jEur)

σ′ Afr
2 = r2

2∑p
j=1 f′ jAfr(1 − f′ jAfr)

τ′ = ρr2

2 ∑p
j=1 f′ jEur(1 − f′ jEur) ∑p

j=1 f′ jAfr(1 − f′ jAfr)

Variance:

Covariance:

GxA Statistical Models

(Approach is similar to Wang et al., 2020 Nat. Comm.)



Two models of gene-by-ancestry interaction
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C. D.

Obtain European e�ect sizes (�Eur
j )

and variance explained by PGS

Step 1 (Training Cohort)

Compute ParPGS and TotPGS, and

their correlations with phenotype

Step 2 (Admixed Cohort)

1. Calculate expected ParPGS corre-

lations under both Local Model and

Global Model (see Methods).

2. Solve for �̂Loc (see Methods).

Step 3 (Estimate �Loc)

�̂Loc
(Stability evaluated across PGS constructed)

(Uncertainty quantified via bootstrap)

β′ SNP = β′ 
Afr a + β′ 

Eur (1 − a) β′ SNP = β′ 
Afr a + β′ 

Eur (1 − a)

a = {1 if ancestry is Afr
0 if ancestry is Eur

a = genome-wide/global Afr ancestry

Captures interactions in cis  Captures interactions in trans and GxE  
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Local Model Global Model 
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(50% global Afr ancestry)

(75% global Afr ancestry)

(60% global Afr ancestry)

(50% global Afr ancestry)

GxA Statistical Models



Questions
1. What do the local and global models imply about individual and 

average causal effects?   

2. Can polygenic scores differentiate the global and local models?  

Penn Medicine Biobank

30,000 genotyped European Americans
10,000 genotyped African Americans

6 quantitative traits

Image Source: Perelman School of Medicine8



Questions
1. What do the local and global models imply about individual 

and average causal effects?   

2. Can polygenic scores differentiate the global and local models?  

Penn Medicine Biobank

30,000 genotyped European Americans
10,000 genotyped African Americans

6 quantitative traits

Image Source: Perelman School of Medicine9

Q1: Causal Effects



Individual Causal Effect
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A.

B. C.

D.
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Global model implies high variability in individual effect

β′ SNP = β′ 
Afr a + β′ 

Eur (1 − a)

Q1: Causal Effects
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B. C.
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Average Causal Effect — Local Model
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LAACor = Local Ancestry Average 
Causal Effect Correlation

Under local model, distribution of average causal effect is just the 
distribution of causal effects in base model: 

Q1: Causal Effects

β′ |LA=Eur

β′ |LA=Afr

[
β′ |LA=Eur
β′ |LA=Afr ] d= β′ 

Eur

β′ 
Afr

LAACor′ 
Loc

def=
cov (β′ |LA=Eur , β′ |LA=Afr)

var (β′ |LA=Eur) var (β′ |LA=Afr)
= ρ



Average Causal Effect — Global Model
Global model produces high average causal effect similarity
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4.3 Global model implies continuous distribution of individual level e↵ect sizes,

but still predicts highly similar average causal e↵ects

Next, we investigate implications of the global and local models imply for individual and average
causal e↵ects. On an individual level, the local model implies that any two individuals sharing the
same local ancestry carry the same allelic substitution e↵ect. The global model, however, stipulates
that any two individuals sharing the same global ancestry carry the same allelic substitution e↵ect.
Because global ancestry is continuous while local ancestry is binary, the global model e↵ectively
implies a distribution of e↵ect sizes across all admixed individuals (Figure 1D).

To obtain average causal e↵ects by local ancestry (see Subsection 2.3), we derive analytical
expressions for the distribution of average causal genetic e↵ect by each local ancestry. (The dis-
tribution of average tagging e↵ects by each local ancestry is described in Supplementary Material
Subsection S8 Box D.)

Proposition 4.2 (Joint Distribution of Local Ancestry Average Causal E↵ects). Under the local

model, the joint distribution of average causal e↵ects is the same as the original joint distribution

of causal e↵ects in the base model, Eq. (2). Let �0
·j |LA=Afr and �0

·j |LA=Eur denote the African and

European local ancestry average causal e↵ects under the global model. The joint distribution of

these quantities is 
�0
·j |LA=Afr

�0
·j |LA=Eur

�
⇠ N

✓
0
0

�
,


u0j w0

j

w0
j v0j

�◆
,

where

u0j = �02
Eur!

02
1,j + 2⌧ 0!0

1,j!
0
2,j + �02

Afr!
02
2,j

v0j = �02
Eur!

02
3,j + 2⌧ 0!0

3,j!
0
4,j + �02

Afr!
02
4,j

w0
j = �02

Eur!
0
1,j!

0
3,j + ⌧ 0(!0

2,j!
0
3,j + !0

1,j!
0
4,j) + �02

Afr!
0
2,j!

0
4,j

are terms in the covariance matrix, with quantities �02
Afr,�

02
Eur and ⌧ 0 defined in Eqs. (3)-(5), and

quantities !0
1,j ,!

0
2,j ,!

0
3,j ,!

0
4,j defined in Supplementary Material Subsection S8 (Box C) depending

only on the haplotype and local ancestry matrices.

The joint distribution of local ancestry average causal e↵ects allows us to compare average
causal e↵ects by local ancestry, similar to earlier studies. We follow the approach of Hou et al. [1],
which uses the correlation parameter of the statistical model to measure the similarity of causal
e↵ect. Denote the Local Ancestry Average causal e↵ect Correlation (LAACor) for a variant j
under the global and the local models by LAACor0Glo

j and LAACor0Locj respectively. While it fol-

lows immediately from Eq. (2) that LAACor0Locj = ⇢, for the global model following Proposition

4.2 LAACor0Glo
j = w0

j

�q
u0jv

0
j . Amalgamating correlations across all variants j, we can define

genome-wide local ancestry average causal e↵ect correlations (LAACor0Glo and LAACor0Loc) and
local ancestry average tagging e↵ect correlations (LAACorGlo and LAACorLoc), which are distribu-
tional parameters defined across all variant-specific local ancestry average causal e↵ects. Eqs. (S23)
and (S24) describe analytical formulae for these quantities.

We compute LAACor0Glo,LAACor0Loc,LAACorGlo and LAACorLoc using real admixed genotype
and local ancestry data, and calculate empirical correlations from simulated tagging and causal
e↵ects under Eqs. (2) and (11) (see Supplementary Material Subsection S8 for simulation details).

We find that the global model implies high average causal e↵ect correlations: LAACor0Glo ranges

from 0.989 to 1 as ⇢ ranges from 0.2 to 1, with LAACor0Glo � 0.998 whenever ⇢ � 0.9. We plot
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Q1: Causal Effects

⟹ LAACor′ 

Glo ≈
∑p

j=1 w′ j

∑p
j=1 u′ j ∑p

j=1 v′ j

LAACor′ 
Glo > 0.99!

ρ
=

0.5

LAACor = Local Ancestry Average Causal Effect Correlation



Summary of Q1
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Hou et al. (2023): LAACor is about 0.94

Hu et al. (2025): LAACor lies in [0.9, 1], 95% CI contains 1

Local Model

Global Model

Low ρ High ρ

Q1: Causal Effects

Example: Height
• High (average) causal effect similarity does not 

rule out variability in individual causal effect

Model Individual Causal
Effect Variability

Average Causal
Effect Similarity

Local
Model ⬇ Same as causal

effect correlation !
Global
Model ⬆ Can be very high,

despite small !



Questions
1. What do the local and global models imply about individual and 

average causal effects?   

2. Can polygenic scores differentiate the global and local models?  

Penn Medicine Biobank

30,000 genotyped European Americans
10,000 genotyped African Americans

6 quantitative traits

Image Source: Perelman School of Medicine14

Q2: PGS Performance



Polygenic scores (computed on tagging variants) 
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See: Zaidi (2020) [blog post]; Vukcevic et al. (2011) AJHG

βEur = β′ 
Eur ⋅ LDEur ⋅

f′ 
Eur (1 − f′ 

Eur)
fEur (1 − fEur)

βAfr = β′ 
Afr ⋅ LDAfr ⋅

f′ 
Afr (1 − f′ 

Afr)
fAfr (1 − fAfr)

Causal and 
Tagging Variant 

LD

Causal Variant 
Allele Frequency

Tagging Variant 
Allele Frequency

Q2: PGS Performance

Causal Effect



• Standard, or Total, polygenic score: 
assign European effect sizes to all 
alleles

• Partial polygenic score: restrict 
to genomic chunks of European 
ancestry onlyA.
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Obtain European e�ect sizes (�Eur
j )

and variance explained by PGS

Step 1 (Training Cohort)

Compute ParPGS and TotPGS, and

their correlations with phenotype

Step 2 (Admixed Cohort)

1. Calculate expected ParPGS corre-

lations under both Local Model and

Global Model (see Methods).

2. Solve for �̂Loc (see Methods).

Step 3 (Estimate �Loc)

�̂Loc
(Stability evaluated across PGS constructed)

(Uncertainty quantified via bootstrap)
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Polygenic scores (computed on tagging variants) 
Q2: PGS Performance

(More on Partial PGS: Sun et al., 2024 Nat. Comm.; Marnetto et al., 2020 Nat. Comm.; Bitarello and Mathieson, 2020 G3)



• Partial PGS performance declines cubically 
in global ancestry under the global model, 
but declines linearly under the local model   

Partial PGS Performance vs Global African Ancestry

([cor2(ParPGS, y)] ≈ r2(1 − a)(1 − a + ρa)2

([cor2(ParPGS, y)] ≈ r2(1 − a)

Global Model:

Local Model:

(Mean African) Global ancestry
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• Total PGS performance declines quadratically 
in global ancestry under either model 

([cor2(TotPGS, y)] ≈ r2(1 − a + ρa)2

Correlation in causal effects 

between ancestries

Causal Variants Known: Partial PGS differentiates the two 
models (but Total PGS does not)

Q2: PGS Performance
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Partial PGS Performance vs Global African Ancestry
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(Mean African) Global ancestry
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• Total PGS performance declines quadratically 
in global ancestry under either model 

([cor2(TotPGS, y)] ≈ r2(1 − a + ρa)2

Correlation in tagging effects 

between ancestries

Causal Variants Known: Partial PGS differentiates the two 
models (but Total PGS does not)

Q2: PGS Performance



• Partial PGS performance declines cubically 
in global ancestry under the global model, 
but declines linearly under the local model   

Total PGS Performance vs Global African Ancestry

([cor2(ParPGS, y)] ≈ r2(1 − a)(1 − a + ρa)2

([cor2(ParPGS, y)] ≈ r2(1 − a)

Global Model:

Local Model:

(Mean African) Global ancestry
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• Total PGS performance declines quadratically 
in global ancestry under either model 

([cor2(TotPGS, y)] ≈ r2(1 − a + ρa)2

Correlation in causal effects 

between ancestries

(Mean African) Global ancestry

Correlation in causal effects 

between ancestries

Causal Variants Known: Partial PGS differentiates the two 
models (but Total PGS does not)

Q2: PGS Performance



• Partial PGS performance declines cubically 
in global ancestry under the global model, 
but declines linearly under the local model   

([cor2(ParPGS, y)] ≈ r2(1 − a)(1 − a + ρa)2

([cor2(ParPGS, y)] ≈ r2(1 − a)

Global Model:

Local Model:
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• Total PGS performance declines quadratically 
in global ancestry under either model 

([cor2(TotPGS, y)] ≈ r2(1 − a + ρa)2

Causal Variants Known: Partial PGS differentiates the two 
models (but Total PGS does not) PGS Performance vs Global African Ancestry

Q2: PGS Performance



Causal Variants Unknown: Heterogeneity in LD and allele 
frequencies hinders differentiation of models 
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Q2: PGS Performance

Both  and  depend on causal-tagging LD and causal allele frequencies([cor(TotPGS, y)2] ([cor(ParPGS, y)2]

LD and causal AF heterogeneities may produce differences in the two models that resemble analytical differences

r²

C
or

(P
ar

PG
S,

Y)
²

Partial PGS Predictive Power

Global Model (Causal)

Local Model (Tagging)



High causal effect correlation also hinders distinguishability 
of local and global models in general
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Q2: PGS Performance
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Summary of Q2
Causal Variants Known (Ideal)

• Can differentiate local and global 
models using ParPGS
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Q2: PGS Performance

• Unknown differences in LD patterns and 
allele frequencies hinder differentiation 

Causal Variants Unknown (Realistic)

Local 
Model

Global 
Model

Low ρ High ρ

Cor(ParPGS,Y)² 

cubic in 


global ancestry

Example: Height

Assuming all polygenic score 
variants are causal: 


50% contribution of global model

High ?ρ
• Difficult to differentiate local and 

global models  



• Models of GxA interaction are consistent with: 

• poor cross-ancestry portability 

• high (average) causal effect similarity across ancestries    


• Fine-mapping causal variants helps differentiate the two 
models in future work

Conclusion
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